The SystemC OCP Models

An Overview of the SystemC Models
for the Open Core Protocol

Alan Kamas

NASCUG 9/29/2004 © Alan Kamas 2004 1
www.kamas.com

This talk will give you an overview of the OCP (Open Core Protocol)
connection and the set of SystemC models built to simulate it.

This talk is copyright 2004 by Alan Kamas. The open core protocol
specification mentioned in this talk is the intellectual property of OCP IP:
see WwWWw.ocpip.org for more information.

Contributors

[0 Anssi Haverinen, Nokia
O Norman Weyrich, Synopsys Inc.

O Yann Bajot and Stéphane Guntz,
Prosilog

[0 Joe Chou, Sonics Inc.
[0 James Aldis, Texas Instruments
[0 OCP-IP & the OCP SLD-WG

NASCUG 9/29/2004 © Alan Kamas 2004 2
www.kamas.com

The OCP Models are the work of many people.

My work on the project was paid for by Sonics, Inc. Sonics, as with the
other companies here, has donated its SystemC work to the project.

In addition to providing code and design, Anssi Haverinen is chair of the
OCP System Level Design Working Group which is responsible for the
channel models.

Norman Weyrich (formerly of Synopsys Inc.) was one of the original
developers and worked on the generic model.

Yann Bajot and Stephane Guntz have built layer adaptors and
contributed to the TL2 models.

Joe Chou of Sonics has contributed to design and code of the OCP
models.

James Aldis has contributed work on the channel monitor.

There are many more members of the OCP SLD-WG from many other
companies that have contributed to the project.

Outline

OO0 What is the OCP Channel?
0 OCP Hardware view

O OCP SystemC Channel Models
B Generic
m OCPTL1
m OCP TL2
® Layer Adapters
0 Availability

0 Future Directions

NASCUG 9/29/2004 © Alan Kamas 2004 3
www.kamas.com

First we’ll cover a brief introduction to OCP channel and how it works at
the hardware level. Then we'll look at the SystemC models for the OCP
channel covering some of the decisions that went into their design.
Finally, we’ll take at peek at where the work is headed in the future.

The Open Core Protocol (OCP)

O An Open Standard for connecting the
blocks on a System-on-Chip

[0 Point to point connection

[0 Flexible & Configurable to work with a
wide range of IP

[0 The Open Core Protocol Specification
is the intellectual property of OCP IP.
See their web site: www.ocpip.org.

NASCUG 9/29/2004 © Alan Kamas 2004 4
www.kamas.com

The OCP (Open Core Protocol) is an open standard for connecting the
blocks of a system on chip. The Open Core Protocol is point to point -
connecting one block to another - and is not a bus specification
(connecting many blocks to many blocks). The standard was developed
to be configurable and flexible to work with many different types of IP.

OCP-IP Public Member List

3rdeye Technology
Accent

Acculent Corporation
Advanced Architectures
Alcatel

Amphion

ARC International
Artisan Components

ATI Technologies

AXYS Design Automation
Beach Solutions

Bitboys

Broadcom

Cadence Design Systems
CAST, Inc.

Chip Implementation Center
ControlNet India

CoWare

DAFCA

Denali

Design And Reuse
Dolphin Integration
Duolog

eASIC

ECSI

EDA Cafe

eInfochips

Esterel Technologies
First con Solutions
Flextronics Semiconductor

000000000000 O00O0O0O0O0O0O0O0O0O0O0O0O0OoOooo

0000000000000 0000000000000000000

GDA Technologies
Geologic

HDL Design House

Hughes Network Systems
Icera Semiconductor

DT

Infineon

Imagination Technologies
Kawasaki

LIRMM

LSI Logic

LTRIM Technologies
Manhattan Routing, Inc.
Mentor Graphics

Micronas

MIPS Technologies
National Tsing Hua University
NEC

NoBug

Nokia

Paradigm Works

Philips Semiconductors
PUCRS

Prosilog

QThink

Qualis

Royal Institute of Technology
Si2

Siemens

icon Interfaces

icon Designs International
Silicon & Software Systems

0000000000 000000000000000O00N00O0oo

SpiraTech

STARC

STMicroelectronics

Summit Design

Synergetic Computing Systems
Synopsys

Tampere University of Technology
Technical University of Denmark
TechOnLine

Tensilica

Texas Instruments

TNI-Valiosys

Toshiba Semiconductor Group
Tower Semiconductor
TranSwitch

TSMC

UFCG

uMC

University of British Columbia
UCBerkeley

Verisity

Virtual Component Exchange
Virtual IP Group

Virtual Silicon

VSIA

White Eagle Systems Technology
WiQuest Communications
Yamaha Corporation

YogiTech

NASCUG 9/29/2004

© Alan Kamas 2004
www.kamas.com

Many companies and universities are involved with the Open Core

Protocol

OCP Layering & Terminology

[0 Signals
B Wires & fields
[0 Phases
B Request, Data handshake, Response
[0 Transfers
B A Read or Write
[0 Transaction

B A complete burst of one or more
transfers

NASCUG 9/29/2004 © Alan Kamas 2004
www.kamas.com

A quick overview of OCP terminology.

OCP at the Hardware Level

Master Core Slave Core
(Initiator) e —— (Target)
i Sideband Signals
NASCUG 9/29/2004 © Alan Kamas 2004 7

www.kamas.com

So, what does this OCP connection look like? At the hardware level, the
Open Core Protocol is a collection of signals between the two cores.
There is a handshake path for requests, another (optional) handshake
path for request data, and a separate path for responses (which includes
the response data). Note that there are also a set of sideband signals
between the cores. These signals include interrupt, flags, and error
signaling.

Hardware Timing

L S S T R

MCmd idle XRD#1 XRD#2 idle
MAddr XAddriXAddr2
SCmdAccept

SResp null null null > null DVA1 X null DVA2 X null

SData Datal Data2
MRespAccept
NASCUG 9/29/2004 © Alan Kamas 2004 8

www.kamas.com

One interesting aspect of the OCP connection is that it allows responses
to be pipelined. That is, it is possible to send a number of requests
before receiving any responses. Here, read request #1 is sent, and then
read request #2 is sent and then the response #1 is sent and then
response #2. The responses may be sent anytime after the request has
been received. Conceivably, this could be a long time after. The only
restriction is that responses are returned in the same order as the
requests.

Response Pipelining

O Next response may not match last
request

[0 Very simple channel models will not
work with response pipelining:

MyData = channel->read(myAddress) ;

NASCUG 9/29/2004 © Alan Kamas 2004 9
www.kamas.com

Jumping ahead here, one aspect of pipelined responses is that it limits
the type of SystemC model you can have. Blocking calls like this one:

myData = read(myAddress);

Don’t always work since the response data you are getting could be from
a previous command. You could model the OCP without the separate
request and response paths but then you would be missing some of the
flexibility and throughput of the OCP connection.

Phase Timing

SThreadBusy
SDataThreadBusy
MThreadBusy

MCmd
Master Core MData Slave Core
Sresponse

MRespAccept

SDataAccept
SCmdAccept

NASCUG 9/29/2004 © Alan Kamas 2004 10
www.kamas.com

Back to the hardware model.

In addition to response pipelining, communications over the OCP
connection must follow a certain order. Here the busy signals must be
sent before the request. The data must start after the request, and the
response comes after that. A cycle accurate model of the OCP connection
must follow the same ordering.

SystemC Model Requirements

Hardware Compatible
Ehat e Software Compatible

Full Timing

Ease of Use
Blocking Calls EventDricen
Cycle Accurate High Performance
Stand-alone . Layered
OCP Specific General Purpose
NASCUG 9/29/2004 © Alan Kamas 2004 11

www.kamas.com

Now that we know a little bit about how the Open Core Protocol works in
the hardware, we're ready to consider the SystemC models. The
question then becomes, what sort of SystemC model is heeded? Is the
model for hardware interfacing or architecture exploration? Should it be
cycle accurate or should it run at a more abstract level? Should the
phases of a transfer be observed or is model performance the priority?
Should the model be stand-alone or layered?

11

A Set of SystemC Models

O Generic Model
B Transaction Level 1
B Transaction Level 2

0 OCP TL1
0 OCP TL2
[0 Layer Adaptors

NASCUG 9/29/2004 © Alan Kamas 2004 12
www.kamas.com

The answer is YES! To meet different modeling needs, there are OCP
channel models at different abstraction levels layered upon a generic
transaction level channel. The OCP channel models include a generic
transaction level channel model for sending requests and responses of a
templated data type back and forth. Built on top of this are the OCP
specific channels. The OCP Transaction Level 1 model is a low level,
cycle-accurate model with all of the phases and timing of the hardware.
The OCP Transaction Level 2 model runs at a higher level of abstraction

by combining the request and data phase and allowing whole bursts to
be sent as single TL2 commands.

12

Basic SystemC OCP Model

Request
|~~~ Start Event |
sendRequest()
Master Core SystemC getRequest() | 2lave Core
Model OCP Channel Model
Initiator Target
() Request Model (Target)
""" End Event " acceptRequest()
NASCUG 9/29/2004 © Alan Kamas 2004 13

www.kamas.com

All of the models have a request path through the channel. The master
calls a function (sendRequest) in the channel model through a port that
is connected to the channel. The channel takes the request and triggers
an event (RequestStartEvent) that the Slave is sensitive to. This may
wake up a SystemC process in the slave which then calls the getRequest
function in the channel. At a possibly later time, the Slave may call the
channel’s acceptRequest() function to accept the request. The channel
then triggers the RequestEndEvent event. The Master is sensitive to this
event as it lets the Master know that old request is finished and a new
request may now begin.

13

Responses are Separate

Response
- CEar Vet sendResponse()

Master Core SystemC Slave Core
Model |9etResponse) A e hnel Model
(Initiator) Model (Target)

acceptResponse() Response
“TTERd Event "
NASCUG 9/29/2004 © Alan Kamas 2004 14

www.kamas.com

A separate path for responses allows for response pipelining.

14

Generic Channel Model

O Based on initial work of Generic
Transaction Level Channel.

[0 Transfer Data type and format is
templated.

NASCUG 9/29/2004 © Alan Kamas 2004
www.kamas.com

15

Useful for experimentation with channel modeling.
Hooks to build connections with EDA tools
Underlying layer for TL1 and original TL2

15

Generic Channel Code

// Master Core Model Example.
// Send a read command over generic channel
// Channel uses TDataCl as its data class

ThataCl *cDataPtr;

cDataPtr = MasterPort->GetDataCl();
cDataPtr->MputMAddr (Addr) ;
MasterPort->MputReadRequest () ;

NASCUG 9/29/2004 © Alan Kamas 2004 16
www.kamas.com

An example of a request being sent over the generic channel. The
generic channel is instantiated with a TDataCl class type template. Thus
the generic channel can carry any type of data, address, etc. Here, the
values for the next request are loaded into the channel and then the
“MputReadRequest” command is called to start the new request and to
toggle the previously loaded data values unto the channel.

16

Transaction Level 1
TL1 OCP Channel

O Cycle Accurate

[0 Follows phase ordering of the
OCP transfer cycle

O Clock Driven

[0 Uses all OCP parameters

[0 Request / Update

0 All OCP signals supported

O OCP signal monitor available

NASCUG 9/29/2004 © Alan Kamas 2004 17
www.kamas.com

The Transaction Level One

This OCP SystemC model attempts to fully capture the timing and
ordering of the hardware OCP connection. It is built on top of the generic
channel with a data class for full OCP support and OCP specific
commands for ease of use.

17

OCP TL1 Code

// Send a write request over the 0CP TL1
// Channel (using blocking commands)

OCPRequestGrp<Td,Ta> req;

reqg.MCmd = OCP_MCMD_WR;

reqg.MAddr = 0x0401;
MasterPort->startOCPRequestBlocking(req) ;
OCPDataHSGrp<Td> datahs;

datahs.MData = myData;
MasterPort->startOCPDataHSBlocking(datahs) ;

NASCUG 9/29/2004 © Alan Kamas 2004 18
www.kamas.com

Here is a sequence of commands to send a write request over the OCP
TL1 channel. Note that here the channel uses an OCP specific data
structure to hold the request. This structure supports all of the OCP
request signals including MCmd (command type), and MAddr (the
address). The OCP TL1 channel model also has an independent data
path. Here, the write data is sent after the write command.

18

OCP TL1 Code - non blocking

// Send a read request over the OCP TL1
Channel (using non-blocking commands)

OCPRequestGrp<Td> req;

req.MCmd = OCP_MCMD_RD;

req.MThreadID = 1;

req.MAddr = 0x0401;

if (MasterPort->sendOCPRequest(req)) {
cout << “Request Sent” << endl;

}

NASCUG 9/29/2004 © Alan Kamas 2004
www.kamas.com

19

The OCP TL1 interface supports both blocking and non-blocking calls.

19

Transaction Level 2
TL2 OCP Channel

[0 Models OCP specific data flow through
the channel

[0 Faster / Greater Throughput

O Commands to send an entire burst of
data at a time.

[0 Request & Response only — no Data
Handshake

0 Timing Approximate

NASCUG 9/29/2004 © Alan Kamas 2004 20
www.kamas.com

The OCP Transaction Level 2 channel is desighed to work at a higher
abstraction level. The phase structure is simplified, consolidating the
data handshake phase into the request group. The request and response
groups are expanded so that an entire burst of OCP transfers may be
sent with a single command. The TL2 channel has better performance
and greater throughput but the downside is that the timing will not be
cycle accurate as it is in TL1.

20

OCP TL2 Channel Code

// Send a write burst over the OCP TL2
Channel (using blocking commands)

Td myData[4];

myData[0]=0; myData[l]=1; myData[2]=2;
myData[3]=3;

OCPRequestGrp<Td> req;

req.MCmd = 0CP_MCMD_WR;

reqg.MAddr = startAddr;

req.MDataPtr = myData;

MPort->sendOCPRequestBlocking(req,4, true);

NASCUG 9/29/2004 © Alan Kamas 2004 21
www.kamas.com

Here a burst write request of 4 data words is sent over the OCP TL2
channel. The whole burst is sent as a single command. Note that, as with
the OCP TL1 channel, both blocking and non-blocking calls are available.

Performance OCP TL1 vs TL2

One at a time Single Data Word Transfers
Write of one data word
then Read of one data 600,000
word. 500,000
§ 400,000
OCP TL1: 232,000 300,000
data words / sec =
= 200,000
OCP TL2: 486,000 s
data words / sec 100,000
0 OCP TL1 OCP T2
NASCUG 9/29/2004 © Alan Kamas 2004 22

www.kamas.com

In this benchmark test the master sends a write command and then a
read command. This sequence is looped 10 million times.

As you can see from the chart, the TL2 channel has about twice the
throughput of the TL1 channel.

For TL1: data handshake is used for the writes, which slows it down.
Also, the TL1 master uses one SystemC thread method (to handle
requests) while the TL2 models are completely event driven.

Here are the test details:

In each of these tests, a simple master is connected to a simple core
through the OCP channel model. The OCP Channel has data handshake
with command, data, and response accept. For writes, the command
goes first and then the data goes in the next cycle.

These tests were run on a dual processor Pentium III 1.26GHz machine.
All simulations ran on a single processor. The tests were compiled under
Linux with gcc 2.96 using the "-0O" flag and the standard OSCI SystemC
library. The first test is a single data word write command followed by a
single data word read.

Performance OCP TL1 vs TL2

With Bursts Burst of 16 Data Word Transfers

Burst Write of 16 data
words then Burst Read of
16 data words.

9,000,000
8,000,000
7,000,000

Q

& 6,000,000

1]
OCP TL1: 277,000 B 5,000,000
data words / sec = 4,000,000
g 3,000,000
O%P TL2: 7d,688,000 2,000,000
ata words / sec 1,000,000
0
OCP TL1 OCP TL2
NASCUG 9/29/2004 © Alan Kamas 2004 23

www.kamas.com

The real speed up from the TL2 channel is how it handles bursts. Here
the master sends a burst 16 write command followed by a burst 16 read
command, and the sequence is repeated.

The OCP TL1 channel sends each command of the burst individually. A
burst 16 read is 16 read commands and 16 responses. The OCP TL2
channel allows the cores to send the whole burst as one command.

Here are the test details:

In each of these tests, a simple master is connected to a simple core
through the OCP channel model. The OCP Channel has data handshake
with command, data, and response accept. For writes, the command
goes first and then the data goes in the next cycle.

These tests were run on a dual processor Pentium III 1.26GHz machine.

All simulations ran on a single processor. The tests were compiled under
Linux with gcc 2.96 using the "-O" flag and the standard OSCI SystemC

library. This second test is a burst 16 data word write command followed
by a burst 16 data word read.

23

Layer Adapters
/ \ -
o
g
TL1 p
OCP TL2 Tocp T2 OCP I"ocrTia oCP By TLL
Master Request /] TL2/TL1 | Request Channel | @ | Slave
Core Model Adapter Model § |Core Model
o
(0]
(24
H
O TL2 @& TL1
O TL1 4= TLO (RTL)
NASCUG 9/29/2004 © Alan Kamas 2004 24
www.kamas.com

One problem with multiple channel model types is getting cores written
for different models to work together.

The layer adapters convert the interface from one OCP layer to another.
Here a Core model has been written to work with the OCP TL2 channel.
The layer adapter allows it to work with an OCP TL1 channel.

The layer adapters may even be chained together allowing an OCP TL2
core to communicate with an RTL (TLO) channel.

Getting the OCP Channel Models

[0 Available for download from OCP-IP:
http://www.ocpip.org/socket/systemc

[0 Click on the license

O Fill in the form

[0 Read the email

[0 Download the Channel Models

NASCUG 9/29/2004 © Alan Kamas 2004 25
www.kamas.com

25

Future Directions

O Performance OCP TL2 Channel
0 OSCI TLM

NASCUG 9/29/2004 © Alan Kamas 2004 26
www.kamas.com

A quick look into the future for the OCP channel models

26

New OCP TL2 Channel

O Available this Fall

O Timing Values for greater accuracy
[0 Higher Throughput
OO0 Written for Performance

® No layering

B No request / update

B Loss of generic commands

NASCUG 9/29/2004 © Alan Kamas 2004

27
www.kamas.com

There will be a new performance version of the OCP TL2 available this
Fall. The new TL2 channel adds timing points that are passed through
the channel so that approximately cycle accurate timing may be
achieved at the TL2 level. The new OCP TL2 channel was rewritten with
performance as the goal and runs faster, however because it is not
layered, it does not support all of generic level commands.

27

New TL2 Channel Performance

Write of one data word Single Data Word Transfers
then Read of one data
word. 1,000,000
900,000
: 800,000
OCP TL2 Orlg: 486,000 § 700,000
data words / sec = 600,000
e
S 500,000
i 400,000
OCP TL2 New: 865,000 = 300,000
[=]
data words / sec 200,000
100,000
0 TL2Ongnal__TL2 New
NASCUG 9/29/2004 © Alan Kamas 2004 28

www.kamas.com

The new TL2 channel has about 75% more throughput then the original
channel. This is true for burst transfers as well.

OSCI TLM and the
OCP Channel Models

O OSCI TLM and OCP Channel working
groups share members and continue
to work together.

O OCP TL1 Channel similar to the
proposed Verification view

O OCP TL2 Channel similar to the
proposed Architecture view

NASCUG 9/29/2004 © Alan Kamas 2004 29
www.kamas.com

The Open SystemC Initiative is also working on developing transaction
level models in SystemC.

29

Further Information

0 More information is available online:
WWW.OCpip.org

[0 OCP Specification

[0 White papers

[0 Channel model download
B Documentation

B Source code
B Example cores

NASCUG 9/29/2004 © Alan Kamas 2004
www.kamas.com

30

There is more information available online.

30

